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Abstract

The "Collective Intelligence" (COIN) framework concerns
the design of collectives of reinforcement-learning agents
such that their interaction causes a provided "world" utility
function concerning the entire collective to be maximized.
Previously, we applied that framework to scenarios involv-
ing Markovian dynamacs where no re-evolution of the sys-
tem from counter-factual initial conditions (an often expen-
sive calculation) is permitted. This approach sets the indi-
vidual utility function of each agent to be both aligned with
the world utility, and at the same time, easy for the associ-
ated agents to optimize. Here we extend that approach to sys-
terns involving non-Markovia n dynamics. In computer simu-
lations, we compare our techniques with each other and with
conventional "team-games'-'-We show whereas in team games
performance often degrades badly with time, it steadily im-
proves when our techniques are used. We also investigate
situations where the system's dimensionality is effectively re-
duced. We show that this leads to difficulties in the agents'
ability to learn. The implication is that "learning" is a prop-
erty only of high-enough dimensional systems.

Introduction

In this paper we are concerned with large distributed col-
lectives of interacting goal-driven computational processes,
where there is a provided 'world utility' function that rates

the possible behaviors of that collective (Wolpert, Turner,
& Frank 1999; Wolpert & Turner 1999). We are particu-
larly concerned with such collectives where the individual
computational processes use machine learning techniques
(e.g., Reinforcement Learning (-RL) (Kaelbing, Littman, &
Moore 1996; Sutton & Barto 1998; Sutton 1988; Watkins &

Dayan 1992)) to try to achieve their individual goals. We
represent those goals of the individual processes as maxi-
mizing an associated 'payoff' utility function, one that in
general can differ from the world utility.

In such a system, we are confronted with the following in-
verse problem: How should one initialize/update the payoff
utility functions of the individual processes so that the ensu-
ing behavior of the entire collective achieves large values of
the provided world utility? In particular, since in truly large
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systems detailed modeling of the system is usually impossi-
ble, how can we avoid such modeling? Can we instead lever-

age the simple assumption that our learnering algorithms are
individually fairly good at what they do to achieve a large
world utility value?

We are concerned with payoff utility functions that are

"aligned" with the world utility, in that modifications a

player might make that would improve its payoff utility also
must improve world utility. 1 Fortunately the equivalence
class of such payoffutilities extends well beyond team-game
utilities. In particular, in previous work we used the COllec-
five INtelligence (COIN) framework to derive the 'Wonder-
ful Life Utility' (WLU) payoff function (Wolpert & Turner
1999) as an alternative to a team-game payoff utility. The
WLU is aligned wifla-w-o?ld--u-tili_,-i_-de_ff_d--Iffaddi-
tion though, WLU overcomes much of the signal-to-noise

problem of team game utilities (Turner & Wolpert 2000;
Wolpert, Tumer,& Frank 1999; Wolpert & Turner 1999;

Wolpert, Wheeler, & Turner 2000).
In a recent paper, we extended the COIN framework

with an approach based on Transforming Arguments Util-
ity functions (TAU) before the evaluation of those functions
(Wolpert & Lawson 2002). The TAU process was originally
designed to be applied to the individual utility functions of
the agents in systems in which the world utility depends on
the final state in an episode of variables outside the collec-
tive that undergo Markovian dynamics, with the update rule
of those variables reflecting the state of the agents at the be-

ginning of the episode. This is a very common scenario, ob-
taining whenever the agents in the collective act as control
signals perturbing the evolution of a Markovian system.

In the pre-TAU version of the COIN framework, to
achieve good signal-to-noise for such scenarios requires
knowing the evolution operator. However it also might

require re-evolving the system from counter-factual initial
states of the agents to evaluate each agent's reward for a
particular episode. This can be computationally expensive.
With TAU utility functions no such re-evolving is needed;
the observed history of the system in the episode is trans-
formed in a relatively cheap calculation, and then the util-

1Such alignment can be viewed as an extension of the concept
of incentive compatibility in mechanism design (Fudenberg & Ti-
role 1991) to non-human agents, off-equilibrium behavior, etc.



ityfunctionisevaluatedwiththattransformedhistoryrather
thantheactualone.

TheTAUprocesshasotheradvantagesthatapplyevenin
scenariosnotinvolvingMarkoviandynamics.Inparticularit
allowsustoemploytheCOINframeworkevenwhennotall
argumentsoftheoriginalutilityfunctionareobservable,due
forexampletocommunicationlimitations.In addition,cer-
taintypesofTAUtransformationsresultinutilityfunctions
thatarenotexactlyalignedwiththeworldutility,buthave
somuchbettersignal-to-noisethatthecollectiveperforms
betterwhenagentsusethosetransformedutilityfunctions
thanit doeswithexactlyalignedutilityfunctions.

Hereweinvestigatetheextensionof theTAUprocess
tosystemswithnon-Markoviandynamicswheretheworld
utilityisthesamefunctionofthestateofthesystematevery
momentin time.Todothiswehavetheagentsoperateon
veryfasttime-scalescomparedtothatdynamics,i.e.,have
thetime-stepsatwhichtheymaketheirsuccessivemovesbe
verycloselypacked.Wealsohavethemovesoftheagents
consistof verysmallperturbationstotheunderlyingvari-
ablesof thesystemratherthanthedirectsettingof those
variables.Nowsincetheworldutilityisdefinedfor every
momentintime,thereisasurfacetakingthevaluesofthose
underlyingvariablesatanytime-steptotheassociatedvalue
oftheworldutility.Sotheproblemfortheagentsisoneof
traversingthatsurfacetotrytogettovaluesoftheunderly-
ingvariablestohaveagoodassociatedworldutility.

Sincethetime-scalesaresosmallthough,wecanapprox-
imate_theeffectsoftheagents'movesatanytime-stepofthe
valueoftheworldutilityatthenexttime-stepasthoughthe
interveningevolutionwerelinear(Markovian).Now,asin
theoriginalTAUwork,assumeforsimplicitythatthatlinear
dynamicsisknownforeachsuchtime-step.Thenateach
time-steptheproblemisreducedtotheexactsameonethat
wasaddressedinthatoriginalTAUwork.

Unlikein thatoriginalworkthough,herethelinearrela-
tionbetweenthemovesoftheagentsandtheresultantvalue
oftheworldutilityatthenexttime-stepchangesfromone
time-steptothenext,asboththeunderlyingvariablesofthe
systemchangeasdoestheassociatedgradient.Accordingly,
the mapping the agents are trying to learn from their moves
to the resultant rewards changes in time.

Here we do not confront this nonstationarity. We use a set

of computer experiments to compare use of the TAU process
to set the utility functions of agents to the alternative con-
ventional approach of "team games" in this non-Markovian
domain. We verify that the TAU process outperforms this al-
ternative. In particular, in many experiments the team game
resulted in world utility values that decrease with time, i.e.,

the agents steer the underlying variables to worse and worse
values. In contrast, the TAU process steer the underlying
variables in such a way that improved world utility with

time.
We also investigate what happens as the underlying sys-

tem is modified so that the moves of the individual agents
become less and less consequential to the dynamics. Intu-

itively, one would expect in such a case that the system's
effective dimensionality gets reduced, while the agents also
have a harder time learning. We present tentative evidence

corroborating this prediction. The implication is that "learn-

ing" is a property only of high-enough dimensional systems.

The Mathematics of Collective Intelligence

We view the individual agents in the collective as players in-
volved in a repeated game. 2 Let Z with elements ff be the

space of possible joint moves of all players in the collec-
tive in some stage. We wish to search for the ( that maxi-

mizes a provided world utility G((). In addition to G we
are concerned with utility functions {9_}, one such function
for each variable/player rl. We use the notation_ to refer to

all players other than 77.

Intelligence and the central equation

We wish to "standardize" utility functions so that the nu-
meric value they assign to a _ only reflects their ranking of

relative to certain other elements of Z. We call such a
standardization of an arbitrary utility U for player _7the "in-

telligence for 7? at _ with respect to U". Here we will use
intelligences that are equivalent to percentiles:

,u(¢7)- fe,.(c)etv(¢) - u(¢')], (1)
where the Heaviside function tD is defined to equal 1 when

its argument is greater than or equal to 0, and to equal 0 oth-
erwise, and where the subscript on the (normalized) measure

d# indicates it is restricted to (i sharing the same non-r] com-
-poneni-sas _- in general, the measure must reflect the _-ype -
of system at hand, e.g., whether Z is countable or not, and if
not, what coordinate system is being used. Other than that,

any convenient choice of measure may be used and the the-
orems will still hold. Intelligence value are always between
0 and 1.

Our uncertainty concerning the behavior of the system is
reflected in a probability distribution over Z. Our ability
to control the system consists of setting the value of some
characteristic of the collective, e.g., setting the functions of

the players. Indicating that value by s, our analysis revolves
around the following central equation for P(G [ s), which

follows from Bayes' theorem:

p(G l s) = f d_cP(G J _a,s)

dGp(_j_g ' s)p(G j s)', (2)

where _'g - (eg, _ (ff : r]l), eg_2 (_ : 772)," ") is the vector of
the intelligences of the players with respect to their associ-
ated functions, and g'a -- (ea(ff : r11), ea(ff : r]2),'" ") is the
vector of the intelligences of the players with respect to G.

Note that eg, (_ : r]) = 1 means that player r] is fully
rational at if, in that its move maximizes its utility, given
the moves of the players. In other words, a point ff where

2The full mathematics of the COIN framework, however, ex-
tends significantly beyond what is needed to address such games.
See (Wolpert & Turner 2001).



eg, (( : 77) = 1 for all players 7?is one that meets the def-
inition of a game-theory Nash equilibrium (Fudenberg &
Tirole 1991). Note that consideration of points ( at which

not all intelligences equal 1 provides the basis for a model-

independent formalization of bounded rationality game the-
ory, a formalization that contains variants of many of the the-
orems of conventional full-rationality game theory (Wolpert
2001a). On the other hand, a ( at which all components of

ga = i is a local maximum of G (or more precisely, a criti-

cal point of the G(0 surface).
If we can choose s so that the third conditional probability

in the integrand is peaked around vectors g'g all of whose

components are close to 1, then we have likely induced large
intelligences. If in addition the second term is peaked about
ga equal to gg, then e'a will also be large. Finally, if the
first term is peaked about high G when gc is large, then our
choice of s will likely result in high G, as desired.

Intuitively, the requirement that the utility functions have
high "signal-to-noise" (an issue not considered in conven-
tional work in mechanism design) arises in the third term.
It is in the second term that the requirement that the util-

ity functions be "aligned with G" arises. In this work we
concentrate on these two terms, and show how to simultane-

ously set them to have the desired form.
Details of the stochastic environment in which the collec-

tive operates, together with details of the learning algorithms
of the players, are reflected in the distribution P(() which
underlies the distributions appearing in Equation 2. Note

though that independent of these considerations, our desired
form for the second term in Equation 2 is assured if we have
chosen utility utilities such that gg equals ga exactly for all

(. We call such a system factored. In game-theory lan-
guage, the Nash equilibria of a factored collective are local
maxima of G. In addition to this desirable equilibrium be-
havior, factored collectives automatically provide appropri-

ate off-equilibrium incentives to the players (an issue rarely
considered in game theory / mechanism design).

Opacity

We now focus on algorithms based on utility functions {97 }

that optimize the signal/noise ratio reflected in the third
term, subject to the requirement that the system be factored.
To understand how these algorithms work, given a measure

d#((o), define the opacity at ( of utility U as:

f Iu(() - u(('-,, (7)tflu((: V,s) = d('g((' ] ()lU(() U(('_,(_)] ' (3)

where J is defined in terms of the underlying probability dis-

tributions, 3 and (_-_, (,) is defined as the worldline whose_

3Writing it out in full, J(_" I _) - J(_,_' [ (_' s)/P(_, I

(-_, s), with:

P(¢, I(_, s)P(G I(,, s)t,((;) + (4)
J(¢,, ¢' I ¢;, s) - 2

P(C; I¢'-,, s)P((, I(;, s)#(¢,)
2

components are the same as those of (' while its r/compo-
nents are the same as those of ( ((Wolpert & Turner 2001)).

The denominator absolute value in the integrand in Equa-

tion 3 reflects how sensitive U(() is to changing (n- In
contrast, the numerator absolute value reflects how sensitive

U(() is to changing ('m So the smaller the opacity of a util-

ity function 97, the more g7 (() depends only on the move of
player r], i.e., the better the associated signal-to-noise ratio
for rl. Intuitively then, lower opacity should mean it is easier

for rl to achieve a large value of its intelligence.
To formally establish this, we use the same measure d#

to define opacity as the one that defined intelligence. Under
this choice expected opacity bounds how close to 1 expected

intelligence can be (Wolpert & Turner 2001):

E(eu(( : 7?) [ s) _< 1 - K, where

< E(au(( : ,7,s) Is). (5)

So low expected opacity of utility g_ ensure that a necessary
condition is met for the third term in Equation 2 to have the
desired form for player rb While low opacity is not, formally

speaking, also sufficient for E(eu(( : rl) [ s) to be close to
1, in practice the bounds in Equation 5 are usually tight.

Difference Utilities

It is possible to solve for the set of all utilities that are fac-
tored with respect to a particular world utility. Unfortu-

nately, in general it is not possible for a collective both to
be factored and to have zero opacity for all of its players.
However consider difference utilities, which are of the form

u(() = a(() - r(f(()) (6)

where F(f) is independent of (7. Any difference utility
is factored (Wolpert 2001b), and under benign approxima-

tions, E(f_, I s) is minimized over the set of such utilities

by choosing

r(f(()) = E(G I (-_, s), (7)

up to an overall additive constant. We call the resultant dif-
ference utility the Aristocrat utility (AU), loosely reflecting
the fact that it measures the difference between a player's

actual action and the average action.

The COIN Framework for Systems with

Markovian Evolution

We consider games which consist of multi-step "episodes".
Within each episode the entire system evolves in a Marko-
vian manner from the initial moves of the players. We are
interested in such games where some of the players rl are not

agents whose initial state is under control of a learning algo-
rithm that we control, but rather constitute an environment
for those controllable agents (i.e., where some of the players

correspond to the state of nature).
Let A be the Markovian single step evolution operator of

the entire system through an episode,

- ; (8)
(t = A_t- z

Each component (t_, for example, could be a one-
dimensional real number. The row vector A v would then



ber/'s update rule. Alternatively, each agent could be repre-

sented by one of N symbolic.values. In that case, (t would

be given in a unary representation as a vector in T¢"_'t"l (i.e.
a Haar basis). Considering such large spaces are necessary
to describe arbitrary, nonlinear dynamics as Markovian evo-
lution. Here we will concentrate on the former case, where
the moves of the players are all real numbers.

The full multiple time step evolution of an episode is

given by single step operator in the usual way: Let

A
A 2
A 3

C_-

where T is the number of time steps per episode. This opera-

tor applied to our initial state (0 yields the entire "worldline"

(, or time history, of the system.

(=C_. (9)

We consider difference utility functions of the form

gn(O = G(C(o) - Fn(FeC_) (10)

where in general L may vary with r_. Given global broadcast

to all agents of the value of G(_), for each agent to evaluate

this type of g7 only requires that those components of FT(t
that are non-zero (and therefore can vary) after application

of the L operator be observed.
This difference utility has two main sources of noise, one

from potentially poor choice of the clamping operator, and
the other from the use of L in the second (subtracted) term
but not in the first. To address that latter source of noise we

can impose limited observability on the first term in addition
to the second one, getting

9n(_) = G(L_) - G(LF,_). (12)

The new utility is not factored with respect to G. Ac-
cording to the central equation however, it may still result in
better performance than when we don't have L in the first
term, if the improvement in opacity more than offsets the
loss of exact factoredness. In addition to the potential for

such far superior opacity, this utility has the added advan-
tage that now we don't even need to rely on global broadcast

of G(L_) to evaluate 97'

The non-Markovian ease

To address the general nonlinear problem, we assign each

agent a real-valued number rn. The state of the system

where G is the world utility function to be optimized. We is the Cartesian product of each agent's action and Yr. Each

will choose F n so that the product F nC_ is independent of agent can choose among three actions which add one of the
agent-r_ s actions: This-is a necessary and sufficient condi_ - values {4-2x, 0} to r7. Nonlinear evolution then occurs to
tion for the associated difference utility 97 ((") to be factored ¢, to produce the value at the end of this episode, (t+l =

with respect to the world utility G for any and all choices

of F 7. In general, F 7 can be chosen in such a way to op-
timize learnability. Here though, for simplicity, we choose

F 7 = G. Accordingly, application of the F 7 operator is an
instance of transforming the argument of the (second term of

the) utility functions of the agents, i.e., it is a TAU process.

Observability restrictions

In practice, the full worldline of the system may not be fully
observable to each agent. Such limited observability of a

particular component may be determined by the problem. In
other cases, due to communication constraints each agent is

only allowed to observe a certain number of components,
and must select which such components to observe, for ex-

ample to optimize some auxiliary quantity like opacity. Sim-

ilarly, the dynamics may not be known exactly to the agent;
some rows of C may be uncertain to an agent, or simply
cannot be determined. In these kinds of situations the 9,7 de:
scribed above cannot be evaluated at the end of an episode

by agent 77,even if the value G((_ is globally broadcast to all

agents.
The TAU approach outlined above is well-suited to ad-

dress such situations. Formally, a decimated identity oper-
ator L can be defined whose diagonal elements are {0, 1}

depending on whether or not they are observable. The cor-
responding factored utility for agent r] is

g7(d) = G((t) - G(LFn_), (11)

Et((t). That value then serves as the argument of G.
Construction of factored utilities

g7(¢,+1) = G(e't(¢])) - G(e,(UL(t)) (13)

requires that 5 ((t) be independent of ri's choice of action.

One way to accomplish this to clamp (apply C;L) to _ and
re-evolve the system. To avoid re-evolving the system, we

approximate 5 @;L(t) with a Taylor Series expansion about

the unclamped _t starting state:

_*t(OL(t) : _((t) + A(_ - OLS) Vta((t). (14)

Assuming not all components of _ equal 0, we can recast

this as as the multiplication of a matrix times (t, where that

matrix is indexed by time. In doing this we reduce the sys-
tem to the linear case, only with a time-dependent update

matrix.
Note that varying A provides us a small parameter to con-

trol the expansion. It should also be noted that while this

method requires that Et (0 be differentiable, the world util-

ity G need not be.

Experiments

Numerical simulations were performed with 50 agents. Af-
ter an initial 100-episode training period, agents selected ini-
tial actions in each subsequent episode with the same re-
inforcement learning algorithm used in our previous work.



All playersexperiencedaquadratic/nonlinearupdaterule
_(_o)= _,j aidr_r_ that depends are agents "position"

{ri}. The coefficients are randomly generated. The world
utility function was a spin glass,

GT = _ J,j_i'_. (15)
i<j

The agents are given a random initial starting point with

-1 < rv < 1. Because Eis quadratic, G(_) is a quartic

polynomial in N dimensions. Since the coefficients {aij}
have random signs, the function G has as many increasing
directions as it decreasing directions. The goal of the system
is to traverse this high dimensional surface, find an increas-

ing direction, and then follow that direction out to infinity.
We collected statistics by averaging runs over many ran-

domly set coefficients ai,j and coupling constants Jij. These
runs were for systems whose first 25% and 75% components
at the end of the episode are observable, given some canoni-
cal ordering of agents. We examined (Figure 1) world utility

value vs. episode number for six utility functions:
1) TAU 9 for a fully observable system;

2) TAU 9 for 75 % observability, 975%;

3) The modification _75% giving a non-factored system,gnf

again with 75 % observability;
4) 925% for a factored system with 25 % observability;

_25% for a non-factored system with 25 % observabil-
5) Y,_S

ity;
...... 6)The team game, where every g_ = G.

Even the results for limited observability clearly outper-
form the corresponding team game in which there is full

observability. Furthermore, for 75% observability, the non-
factored utilities (L-in both terms) consistently outperform
their factored counterpart. In these runs factoredness fell to

approximately 90%. The improvement in performance due
to better signal-to-noise more than outweighs the degrada-

tion due to loss in factoredness.
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Figure 1: System performance for N = 50 agents using
the Taylor Series method. The dynamics is governed by

a quadratic function of the agents' "positions". The world
utility G is a quartic in N dimensions. (upper two graphs

_2s% and 975%. lower two- r5%. middle two are Yn]are 9 ana 9_] ,

are 925_ and a team game G.) The initial training period is
not shown.
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Figure 2: Taylor Series method where the quadratic coeffi-
cients have more - than + signs. (graphs: upper pair are 9

and _75%. middle three are 975%, g25%, and the team game;
Yn/ '

-_% _ three of the limited observabil-
lower is 9ny "1 In this case,
ity utilities and the team game perform worse over time (i.e.
their world utilities decrease).
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It is interesting to adjust the ratio of 4- signs in the co-
efficients of the polynomials. If we introduce, for example,
more negative coefficients than positive, we expect the sur-
face to preferentially turn down. The task for the agents
becomes more challenging. We find (Figure 2), in fact,
that three of the limited observability utilities perform worse

over time (i.e. their world utility decreases). The team game
also performs worse over time. In fact, not only does the
team game give poor performance, but it fails altogether.

_75% still give robustThe lowest noise TAU utilities 9 and 9_/

performance.

In this case, the team game gives worse performance than
a random walk i.e. no learning is happening. In fact, the

system executes essentially determistic, nonlinear behav-
ior (Figure 3). Remarkably, as we increase the data aging
parmeter (weighting more heavily data that appeared further
in the past), the system becomes even more exotic, closely
resembling a low-dimensional nonlinear system. By aging
the data more severely, we effectively damp out a large por-

tion of the degrees of freedom stored in the agents' train-

ing sets, hence the lower dimensionality. Learning, it would
seem, is possible only in higher-dimensional systems.



Conclusion

We present a detailed extension of the COIN framework to
systems that undergo non-Markovian evolution. This builds
on previous work where the Markovian case (Wolpert &
Lawson 2002) was considered. The approach is applied

to systems with nonlinear update rules using a perturbative
technique. Results from numerical simulations find consis-
tent, robust improvement of performance as compared to the

conventional team game.
This framework naturally includes the case of limited ob-

servability. We found that even COIN-based utility func-
tions constrained by limited observability often outper-
formed team game utilities having full observability. We
also found a new class of nonfactored utilities that consis-

tently outperformed their factored counterpart, due to im-

proved signal-to-noise characteristics.
We find that the system's performance can depend on the

characteristics of the surface being optimized. We show that
in some situations a team game will fail altogether (i.e. its

performance will degrade over time) while the correspond-
ing TAU utility continues to perform well. In this "non-
learning regime", the system executes interesting determin-
istic, nonlinear behavior, indicative of low-dimensional sys-
tems.
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